Too Short for a Blog Post, Too Long for a Tweet 104

Here are a few excerpts from a book I recently read, "The Hidden Life of Trees: What They Feel, How They Communicate—Discoveries From a Secret World," by Peter Wohlleben:

But why are trees such social beings? Why do they share food with their own species and sometimes even go so far as to nourish their competitors? The reasons are the same as for human communities: there are advantages to working together. A tree is not a forest. On its own, a tree cannot establish a consistent local climate. It is at the mercy of wind and weather. But together, many trees create an ecosystem that moderates extremes of heat and cold, stores a great deal of water, and generates a great deal of humidity. And in this protected environment, trees can live to be very old. To get to this point, the community must remain intact no matter what. If every tree were looking out only for itself, then quite a few of them would never reach old age. Regular fatalities would result in many large gaps in the tree canopy, which would make it easier for storms to get inside the forest and uproot more trees. The heat of summer would reach the forest floor and dry it out. Every tree would suffer. 

Every tree, therefore, is valuable to the community and worth keeping around for as long as possible. And that is why even sick individuals are supported and nourished until they recover. Next time, perhaps it will be the other way round, and the supporting tree might be the one in need of assistance. When thick silver-gray beeches behave like this, they remind me of a herd of elephants. Like the herd, they, too, look after their own, and they help their sick and weak back up onto their feet. They are even reluctant to abandon their dead.

In the symbiotic community of the forest, not only trees but also shrubs and grasses—and possibly all plant species—exchange information this way. However, when we step into farm fields, the vegetation becomes very quiet. Thanks to selective breeding, our cultivated plants have, for the most part, lost their ability to communicate above or below ground—you could say they are deaf and dumb—and therefore they are easy prey for insect pests. That is one reason why modern agriculture uses so many pesticides. Perhaps farmers can learn from the forests and breed a little more wildness back into their grain and potatoes so that they’ll be more talkative in the future.

Students at the Institute for Environmental Research at RWTH Aachen discovered something amazing about photosynthesis in undisturbed beech forests. Apparently, the trees synchronize their performance so that they are all equally successful. And that is not what one would expect. Each beech tree grows in a unique location, and conditions can vary greatly in just a few yards. The soil can be stony or loose. It can retain a great deal of water or almost no water. It can be full of nutrients or extremely barren. Accordingly, each tree experiences different growing conditions; therefore, each tree grows more quickly or more slowly and produces more or less sugar or wood, and thus you would expect every tree to be photosynthesizing at a different rate. 

And that’s what makes the research results so astounding. The rate of photosynthesis is the same for all the trees. The trees, it seems, are equalizing differences between the strong and the weak. Whether they are thick or thin, all members of the same species are using light to produce the same amount of sugar per leaf. This equalization is taking place underground through the roots. There’s obviously a lively exchange going on down there. Whoever has an abundance of sugar hands some over; whoever is running short gets help. Once again, fungi are involved. Their enormous networks act as gigantic redistribution mechanisms. It’s a bit like the way social security systems operate to ensure individual members of society don’t fall too far behind.

But why don’t we see leaves as black? Why don’t they absorb all the light? Chlorophyll helps leaves process light. If trees processed light super-efficiently, there would be hardly any left over—and the forest would then look as dark during the day as it does at night. Chlorophyll, however, has one disadvantage. It has a so-called green gap, and because it cannot use this part of the color spectrum, it has to reflect it back unused. This weak spot means that we can see this photosynthetic leftover, and that’s why almost all plants look deep green to us. What we are really seeing is waste light, the rejected part that trees cannot use. Beautiful for us; useless for the trees. Nature that we find pleasing because it reflects trash? Whether trees feel the same way about this I don’t know, but one thing is for certain: hungry beeches and spruce are as happy to see blue sky as I am. 

The color gap in chlorophyll is also responsible for another phenomenon: green shadows. If beeches allow no more than 3 percent of sunlight to reach the forest floor, it should be almost dark down there during the day. But it isn’t, as you can see for yourself when you take a walk in the forest. Yet hardly any other plants grow here. The reason is that shadows are not all the same color. Although many shades of color are filtered out in the forest canopy—for example, very little red and blue make their way through—this is not the case for the “trash” color green. Because the trees can’t use it, some of it reaches the ground. Therefore, the forest is transfused with a subdued green light that just happens to have a relaxing effect on the human psyche.
Post a Comment